Fractional weak discrepancy and split semiorders

نویسندگان

  • Alan Shuchat
  • Randy Shull
  • Ann N. Trenk
چکیده

The fractional weak discrepancy wdF (P ) of a poset P = (V,≺) was introduced in [5] as the minimum nonnegative k for which there exists a function f : V → R satisfying (i) if a ≺ b then f(a)+1 ≤ f(b) and (ii) if a ‖ b then |f(a) − f(b)| ≤ k. In this paper we generalize results in [6, 7] on the range of wdF for semiorders to the larger class of split semiorders. In particular, we prove that for such posets the range is the set of rationals that can be represented as r/s for which 0 ≤ s− 1 ≤ r < 2s.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Range of the Fractional Weak Discrepancy Function

In this paper we describe the range of values that can be taken by the fractional weak discrepancy of a poset and characterize semiorders in terms of these values. In [6], we defined the fractional weak discrepancy wdF (P ) of a poset P = (V,≺) to be the minimum nonnegative k for which there exists a function f : V → R satisfying (1) if a ≺ b then f(a) + 1 ≤ f(b) and (2) if a ‖ b then |f(a) − f...

متن کامل

Fractional Weak Discrepancy of Posets and Certain Forbidden Configurations

In this paper we describe the range of values that can be taken by the fractional weak discrepancy of a poset subject to forbidden r+ s configurations, where r+s = 4. Generalizing previous work on weak discrepancy in [5, 12, 13], the notion of fractional weak discrepancy wdF (P ) of a poset P = (V,≺) was introduced in [7] as the minimum nonnegative k for which there exists a function f : V → R ...

متن کامل

Fractional weak discrepancy and interval orders

The fractional weak discrepancy wdF (P ) of a poset P = (V,≺) was introduced in [6] as the minimum nonnegative k for which there exists a function f : V → R satisfying (i) if a ≺ b then f(a)+1 ≤ f(b) and (ii) if a ‖ b then |f(a) − f(b)| ≤ k. In this paper we generalize results in [7, 8] on the range of the wdF function for semiorders (interval orders with no induced 3+ 1) to interval orders wit...

متن کامل

Dimensions of Split Semiorders

A poset P = (X,P ) is a split semiorder when there exists a function I that assigns to each x ∈ X a closed interval I (x) = [ax, ax + 1] of the real line R and a set F = {fx : x ∈ X} of real numbers, with ax ≤ fx ≤ ax +1, such that x < y in P if and only if fx < ay and ax +1 < fy in R. Every semiorder is a split semiorder, and there are split semiorders which are not interval orders. It is well...

متن کامل

The fractional weak discrepancy of a partially ordered set

In this paper we introduce the notion of the fractional weak discrepancy of a poset, building on previous work on weak discrepancy in [5, 8, 9]. The fractional weak discrepancy wdF (P ) of a poset P = (V,≺) is the minimum nonnegative k for which there exists a function f : V → R satisfying (1) if a ≺ b then f(a) + 1 ≤ f(b) and (2) if a ‖ b then |f(a)− f(b)| ≤ k. We formulate the fractional weak...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 159  شماره 

صفحات  -

تاریخ انتشار 2011